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Rheometrical flow systems 

Part 1. Flow between concentric spheres rotating 
about different axes 

By K. WALTERS 
Department of Applied Mathematics, University College of Wales, Aberystwyth 

(Received 18 March 1969) 

The flow of an elastico-viscous liquid contained between two concentric spheres 
which are rotating with the same angular velocity about axes passing through 
the centre of the spheres is considered. The angle between these axes is small. 
The solution is obtained by expanding the velocity components in terms of 
a small parameter a2, which is usually associated with problems involving oscilla- 
tory flows. The analysis is shown to have a direct application to the Balance 
Rheometer. In  particular, it is shown that inertial effects in this rheometer are 
likely to be very small. 

1. Introduction 
When elastico-viscous liquids are subjected to a small sinusoidal deformation, 

their behaviour can be characterized by equations of state of the form,? 

Pi, = -pgik+p;lc, (1) 

pi, = 27*e$), (211 
where p,, is the stress tensor, p an arbitrary isotropic pressure (in the case of an 
incompressible fluid), g,, the metric tensor of a suitable co-ordinate system and 
e($ is the (first) rate-of-strain tensor. y* is known as the complex viscosity and is 

. G’ 7* z y’-z-, 
i2 

usually expressed in the form, 
(3) 

where Q is the frequency of the oscillation and 7’ is given the name ‘dynamic 
viscosity ’ and G’ the name ‘dynamic rigidity’. Rheologists usually determine 
?I* by subjecting the liquids to an unsteady motion in which the (Eulerian) 
velocity components are small and have a factor eint. Various rheometers have 
been constructed on this principle and consistent theories for these instruments 
are available (Walters 1968). 

It is, however, not essential to consider an unsteady flow to determine 7”. 
It is sufficient to generate a flow for which individual fluid elements are subjected 

t Covariant suffices are written below, contravariant suffices above, and the usual 
summation convention for repcntcd snfficos is assumed. 

$ We are assuming here that the rate-of-strain tensor is complex and has some sinii- 
soidal dependence such as ezQt, the real part being implied. 
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to a small sinusoidal deformation. Such a flow may in fact be steady in the sense 
that a/at z 0. In this and subsequent papers, we shall consider flow situations 
of this type. 

In the present paper, we consider the situation illustrated in figure 1. The 
fluid is contained between concentric spheres, the inner sphere having a radius rl 
and the outer sphere a radius r2. The inner sphere rotates with constant angular 
velocity !2 about the axis Ox and the outer sphere rotates with the same angular 
velocity Q about the axis 02 .  The axis 0 2  is in the plane 0x2. The angle e between 
the axes Oz and 0 2  is assumed to be small enough for second-order terms in E to 

L 

t 

FIGURE 1 

be ignored. The purpose of the analysis is to determine the couple exerted by the 
fluid on the inner sphere. In  particular, we shall be concerned with the components 
of this couple about the axis Ox (C,) and about the axis Oy (Cg). 

A new rheometer has recently been introduced by Kepes (1970). This 'balance 
rheometer ' (soon to be manufactured commercially by Contraves, A. G., 
Switzerland), subjects the fluid to the type of flow considered in the present 
paper. In  this rheometer, the angle between the axes of rotation is always less 
than 6' and can be as small as 0.5'; the radii of inner and outer spheres are 2.1 cm 
and 2-2 cm, respectively, and the maximum speed of rotation is 20 Hz. Kepes 
claims that the measurement of the couples C, and C, can be used to determine 
r,~' and G', respectively. In  the present paper, we substantiate this claim, and at  
the same time indioate to what extent inertial effects are likely to modify the 
interpretation of the experimental results. 
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2. Basic equations 
It is convenient to introduce spherical polar co-ordinates (r,  8, $) defined by 

x = r sin 8 cos $, 
y = r sin 8 sin 9, 
x = rcose.  

(4) 

It is also useful to introduce a further set of co-ordinates (r,  8, T) related to the 
OX and Oy axes. The following relations hold: 

(5) 
cos8 = cos 8 cos E + sin 0 m s  $ sin e, 

sin B cos + = sin 8 cos $ cos e - cos 8 sin E .  

Using (5) ,  it can be shown that the boundary conditions for the problem under 
consideration can be expressed in the form,? 

1 

} (6) 
qr) = 0, qO) = 0, v($) = Qrl sin 8 on r = rl, 

qr) = 0,  

where qr), v(e), ~ ( $ 1  denote the physical components of the velocity vector. In  (6) 
second-order terms in E have been ignored. If the body forces are incorporated 
in the isotropic pressure p, the stress equations of motion for a steady flow 
become 

v(e) = - eQr, sin $, v($) = Qr,[sin 6 - e cos 8 cos $1 on r = r2, 

where p is the density of the fluid. The equation of continuity is 

a a a 
ar ae w - (r2 sin 8vO) + - (r sin Ow(,)) + - (rv($,) = 0. 

It is next necessary to characterize the elastico-viscous liquid by means of 
suitable equations of state. We note that when e = 0,  the liquid is not subjected 

t Brackets placed round suffices will be used to denote the physical components of 
vectors and tensors. 

F L M  40 13 
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to any deformation and that the deformation is small provided E is small. It is 
therefore possible to write the equations in the form of integral expansions 
(Coleman & No11 1961 ; Pipkin 1964). For example, the third-order approximation 

is t 
M2(t - t’, t - t ” )  Ci,(t!) Cjk(l”) dt’ dt” 

1 
N3(t - t‘, t - t N ,  t - t ” )  C$’) C,,(t”) Ck(t”) dt’dt” dt” +SlmSlmS-m 

where 

x‘i being the position at  time t‘ of the element that is instantaneously at the point 
xi at time t. Equation (11) could be written in a number of alternative but equiva- 
lent forms involving different measures of the deformation, but (1 1) has ad- 
vantages from a manipulative standpoint. 

Since c i k  = 0 when E = 0, we see that C,, must be order E. Our restriction to 
first-order terms in E implies that equation (11) can now be replaced by the 
fist-order approximation, 

rt 

I n  terms of the kernel function Nl occurring in (13), the complex dynamic 
viscosity ?* is given by 

v* = 6 1: M..(LJ [I -,-in[] at. 

I,, 

(14) 

We sha.11 find that q* plays a prominent part in the analysis which follows. 
One of our main objectives in the present work is to determine the couples 

C,, C, and C, on the inner sphere. These are given in terms of the stress com- 
ponents by the relations, 

2n n 
C, = - sin + +pw) cos + GoS el sin e ae a$, (15) 

(16) C, = r : J r  1; [I)(,@) cos II. - plr9) sin + cos el sin e de d+, 

where the stresses are evaluated a t  r = rl.  

3. Solution of the equations 
When the axes ofrotation are coincident, i.e. when E = 0 ,  all the basic equations 

are satisfied by 



Rheometrical flow systems. Part 1 195 

Working t.0 first order in E ,  the boundary conditions would suggest a velocity 
distribution of the form, 

where U ,  V and W are complex and the real part is implied. 
Inspection of the deformation tensor cik indicates that it is necessary to 

determine the displacement functions x ‘ ~ ,  which we shall write as r’, 8‘, $‘. 
These are given by (Oldroyd 1950) 

Substituting (19) into (20) and solving the differential equations subject to the 
boundary conditions 

(21) r’ = r,  8’ = 6, $’ = $ when t’ = t ,  

Equation (22) indicates that the particle which is at  (r, 8, @) at the current time t 
will have been at that position at previous times t” ,  where (t-t”) = 2nn-/fi, 
n = 1,2,  . ... This means that the streamlines are closed curves, which are 
described by individual fluid elements at  the speed of rotation of the spheres. 

It is next necessary to determine the metric tensor gik(r’,8’,$‘). This is 
obtained by writing down gik(T, 8, $), replacing r ,  8, $, by r’, 8’, $’, respectively, 
and using ( 2 2 ) .  In  this way, we obtain 

grdr’, 8’7 $7 = gr$(r’, 0’9 $9 = g/3&’, O‘, ll.’) = 0, 



We note from (24), that although the flow is steady in the sense that ajat = 0,  
each material element is subjected to a sinusoidal deformation. 

Substituting (19) and (25) into (7)-(9)) we obtain, on equating first-order 
terms in B ,  

- - a2[U + 2iWsin 61, 2u ap 
r2 ar 

1 2v 2au E) rzsinze r2 ae 
_ _ _  - - -a2[V+2iWcos8], (27) 2iwcose 1 ap 

+- - r2- +-- sine- -~ 1 a av 
2 % ( a,) +sin 0 ae a ( 

- 
r2sin28 r a0 
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2ivcose ip - -a2[W-2i(Usin8+ VcosB)], (28) 
+ r2sinze rsine 

p = p(0) + pE sin2 6 + T*& e+@, 
2 

where 

p(O) being a constant, and 

It is interesting to note that the parameter a2 given by (29) also occurs in the 
theory for the oscillatory flows which are usually involved in the experimental 
determination of r* (cf. Walters 1968). 

Equations (26)-(28) are essentially the Navier-Stokes equations with the 
(frequency dependent) complex viscosity T* replacing the (constant) Newtonian 
viscosity coefficient. In  the present paper, we shall obtain a solution by expanding 
the velocity components and the pressure in powers of a2, i.e. we write 

(29) a2 = - iQp/y*. 

1 
u = uo+a2u,+a4u2+ ..., 
v = w0+a2w,+a4v,+ ..., 
w = w,+a2wl+a4W2+ ..., 
p = po+a2j71+a4132+ .... 

(i) Zero-order solution 

We obtain first the solution for a2 = 0, which corresponds to the case when the 
effect of fluid inertia may be ignored. This zero-order solution is of some practical 
importance, since the neglect of fluid inertia would be justified in many applica- 
tions of the Balance Rheometer. 

The boundary conditions (6) suggest a zero-order velocity distribution of the 
form, 

uo = 0, wo = i f (r),  wo = -f(r)cosO, 

which automatically satisfies the equation of continuity (10). Substituting (31) 
into (26)-(28), with a2 = 0, we obtain 

(31) 

po = 0 (32) 

and 

The solution of (33) subject to 
f = O  on r = r l ,  

is 

(33) 

(34) 

where h = ri/(rz - r:). (35) 

We substitute (31), (34) and (35) into the stress components (25), take the real 
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parts of these components and use (15)-(l?'), to obtain the zero-order couples 

The analysis of this section formalises the earlier work of Jones & Walters 
(1969) who noted that the solution for a Newtonian viscous liquid, which can be 
obtained very simply from the superposition principle, also applies to an elastico- 
viscous liquid. 

We note from (36) that experimental (Cg), a) and (C:), a) results can be 
immediately converted into meaningful ( f ,  a) and (G', a) data. This indicates 
that the Balance Rheometer can be used to determine the dynamic viscosity 
and the dynamic rigidity in cases when fluid inertia is negligible. In order to 
determine to what extent this interpretation is modified when fluid inertia cannot 
be ignored, it is necessary to proceed to higher-order approximations. 

(ii) First-order solution 
Substituting (31) and (34) into (26)-(30) and equating terms involving a2, we 

These equations have to be solved subject to 

The work of Walters & Waters (1963)t and' the form of the forcing functions 
u l=v l  = w l =  0 on r = rl and r = r2. (40) 

in (37)-(39) strongly suggest a velocity distribution of the form 

6iF(r)  
r2 

u1 = -- sinocoso, 

i dF 
' - r  dr 

1 dF 
l - r  dr 

v - --[sin28-cos28], 

---case, 

t Walters & Waters (1963) considered the related problem when the fluid is contained 
between spheres which rotate about the same axis with different angular velocities. 
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which automatically satisfies the equation of continuity (10). Substituting (41) 
into (37)-(39), and writing p1 = ij5,(r)sinOcos8, we obtain 

B = - -  [4 - gp+ 1 0 ~ 3 -  9p5 + 4 ~ 6 1 ,  
8A 

[6 - 20p2 + 14p4 + 14p5 - 20p7 + 6 p ] ,  

h 

hr2 
8 h  

c = 

5 + ~ 7 1 ,  D = --[1-6P2+5P3f5P4-6/3 4 8  

from the first equation, and 

(47) ' 

from both the second and third equations. Eliminating i?,, we have finally 

which has to  be solved subject to 

(45) 
dF 
dr 

P=- = 0 on r = r l  and r = r 2 .  

The solution of (44) subject to (45) is (cf. Walters & Waters 1963) 

F = A + (B/r2) + Cr3 + Dr5 + Er2, (46) 

A = [S - 15p + 7P3 + 7P5 - 1 5p7 + SP8] 
8h  

where 

and 

From (15)-(17), (25), (30),  (41) and (46)-(48), it is not difficult to show that 
the couples to order a2 are all zero, i.e. 

This means that terms of order a4 need to be considered to assess the effect of 
fluid inertia on the couples Cz, Cl, and C,. 
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(iii) Second-order solution 
Substituting (41), (46)-(48) into the equations of motion (26)-(28) and equating 
powers of a4, we obtain 

(52) 
1 d F  1 2 F  4 d F  

where F is given by (46). 
Close inspection of the forcing functions in (50)-(52) suggests that we write 

u2 = iH(r)  sin 8 cos 8, 

w2 = i J ( r )  +iK(r)sin28, 

w2 = - J ( r )  cos 8 + L(r)  sin2 8 cos 8, 

p2  = iS2(r) sin 8 eos 8. 

The equation of continuity requires 

I d  
- - ( r 2 H ) + 3 K + L  = 0. 
r dr 

Substituting (53) into (50)-(52), we obtain 

d2H 4 d H  4H d p  6F ZdF -+- 2 =  - 
dr2 r dr r2 dr r2 r dr ’ 

d2K 2 d K  6 K  4H 2L 2p 
-+- + -=--  2 
dr2 r dr r2 r2 r2 r ’  

d2J Z d J  2 5  p2 1 d F  2 -+----=----+-[[L-Ii-H]. 
dr2 r dr r2 r r dr r2 

(53) 

(54) 
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Substituting (56) into (55) and using (54), we obtain 

20 1 

d4H d3H dH 
dr4 dr3 dr 

r4- + 8r3- - 24r-+ 24H 

From (57) and (59), we have finally 

d4H d3H dH d2F 
dr4 dr3 dr  dr2 

r4- + 8r3- - 24r- + 24H = 4r2- - 24F, 

which has to be solved subject to 

H = d H / d r  = 0 on r = r l  and r = r 2 .  (61) 

The solution of (60) subject to (61) is 

A, E, D and A are given by (47) and (48), and 

PI = 6 - 20P2 + 14P4 + 14P5 - 2O/37 + 6P9, 

Q1= 8 - 15/3+ 7/33+ 7/35 - 15p7 + 8P8, 

R~ = 2-12/32+10/33+10/34-12/35+2/37, 

S1= 4 - 9/3 + lop3 - 9P5 + 4P6, 

P2 = 1 - 15P4+ 14P5+ 14P6-- 15/3'+/311, 

Q2 = 5 - 12/3+ 7/32 + 7p6- 12/3'+ 5/38, 

R2 = 1-10/33+9/34+9/35-10/36+/397 

S2 = 3 - 8/3+ 5P2 + 5P4 - 8P5+ 3/36, 

P3 = 4 - 49/35 + 9 0 p  - 49p9 + 4p4, 

Q3 = 10-28/32+I.8/34+ 18p7-28/39+ IO/311: 

R, = 8 - 35p3 + 27p5 + 27p7 - 35/39 + 8/31', 
X3 = 6 - 20P2 + 14P4 + 14p5 - 20/3' + 6/3'. 
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The solution of (57 ) ,  subject to 

L =  0 on r = r l  and r = r 2 ,  (65) 

where 
2B 

1 u = -__ [Ar:(/33- 1)  + 2Bri(p5- 1) +$Dr2,r,(l -p2)  +$Er$(p-  I)]. 
p7- 1 

From (54), we obtain 

2B 1 

3r2 
K = A +- -1Dr5- xEr2- 3 Pr - + ( 5 R  + T )  r3 + i (2X-  U )  ?, 

2A 10R 2Q 
r 3r3 r3 

and from (56) 
p 2  = - + ~ + 2Dr4 + 2Er + - + 7Rr2. 

Substituting (46), ( 6 2 ) ,  (66), (68) and (69) into ( 5 8 ) ,  we have 

The solution of (70) subject to 

J =  0 on r = r l  and r = r 2  

is 
X 2 5 0  E 

r2 36 3 r4 
J = Yr+---rr5- - r2+  Fr3+--, 

where 

w = , 1 , [ y B + $ T - 3 C ] ,  

X = L [ S U  3 0  - 5S1, 

From (15) to (17) ,  (30)  and (53) ,  it can be shown that the couples to order a4 
(Ci4), Cf), Ci4)) are given by 

(74) 

(75) 

Cp) = +5ner!(Q2y'a4, + G'a4 r )  Q(rA7 

Cb4f = &mrZ(G'a$ - v'Qa4,) G(rl ) ,  

c;4 = 0, 

where a4 = a$ + ia4, 

and 
d K  d L  

dr r dr r dr r 
G(r )  = l o r d  ( J )  + 5r - (-) - r- (-) . 
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4. Discussion 
We see from (35 ) ,  (36)’ (49), (74) and (76) that the operating formula for a given 

balance rheometer (to order a4) can be obtained by computing h and G(r l )  
corresponding to the dimensions of the instrument. 

We are particularly interested in the effect of fluid inertia on the interpreta- 
tion of experimental results. In order to assess this in the most convenient way 
we determine G(rl) for very small gaps by writing r = rl + d5 and working to 
the leading power in d. In this way, we obtain 

F = - g ~ ~ , d 4 [ 2 4 - 2 ~ 3 + ~ 2 1 ,  

H = - (hd6/120r1) [2X6 - 6X5 + 5?E4- X 2 ]  

L = (hd5/60) [625- E X 4 +  10Z3-X], 

K = O(d6)’ 

p2 = 0(a4), 

J = (hd5/240) [655 - 15Z4 + 10Z3 - X]. 

From (76)  and (77), we obtain 
G(rl) = - (hd4/40) 

(77 )  

and Cp) = - ( n ~ r ! h / l 5 0 )  [Qv’c&+ G‘ai]d4, 

Cg) = ( n ~ < h / 1 5 0 )  [Qq’ai - Gag] d4, 

c,- ic, = s ~ ~ h r ~  R V * ~  - (d4a4/1200)1, 

(79) 

where terms of order d5 have been ignored. From (36)  and (79)’ we can write 

(80)  

where terms of order a6 have been ignored. 
For the Balance Rheometer of Kepes d = 0.1 cm, and it will be seen from (80) 

that the ‘inertia’ correction in this case is extremely small. We conclude that 
inertial effects are likely to be negligible in most applications of the Balance 
Rheometer, and that (80) may be used to take these into account in extreme 
cases of low viscosity fluids and high rotational speeds. 

I have benefitted from discussions with Mr T. E. R. Jones and correspondence 
with Mr R. R. Zangger. 
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